The edge-Hosoya polynomial of benzenoid chains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

on the tutte polynomial of benzenoid chains

the tutte polynomial of a graph g, t(g, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. in this paper a simple formula for computing tutte polynomial of a benzenoid chain is presented.

متن کامل

hosoya polynomials of random benzenoid chains

let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

The Hosoya polynomial decomposition for hexagonal chains

For a graph G we denote by dG(u, v) the distance between vertices u and v in G, by dG(u) the degree of vertex u. The Hosoya polynomial of G is H(G) = ∑ {u,v}⊆V (G) x dG (u,v). For any positive numbers m and n, the partial Hosoya polynomials of G are Hm(G) = ∑ {u, v} ⊆ V (G) dG (u) = dG (v) = m xdG (u,v), Hmn(G) = ∑ {u, v} ⊆ V (G) dG (u) = m, dG (v) = n xdG (u,v). It has been shown that H(G1) − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Chemistry

سال: 2018

ISSN: 0259-9791,1572-8897

DOI: 10.1007/s10910-018-0942-1